The Fermat-Torricelli problem in normed planes and spaces
نویسندگان
چکیده
The famous Fermat-Torricelli problem (in Location Science also called the Steiner-Weber problem) asks for the unique point x minimizing the sum of distances to arbitrarily given points x1, . . . ,xn in Euclidean d-dimensional space R. In the present paper, we will consider the extension of this problem to d-dimensional real normed spaces (= Minkowski spaces), where we investigate mainly, but not only, the case d = 2.
منابع مشابه
The Fermat-torricelli Problem in the Light of Convex Analysis
In the early 17th century, Pierre de Fermat proposed the following problem: given three points in the plane, find a point such that the sum of its Euclidean distances to the three given points is minimal. This problem was solved by Evangelista Torricelli and was named the Fermat-Torricelli problem. A more general version of the Fermat-Torricelli problem asks for a point that minimizes the sum o...
متن کاملA new perspective to the Mazur-Ulam problem in $2$-fuzzy $2$-normed linear spaces
In this paper, we introduce the concepts of $2$-isometry, collinearity, $2$%-Lipschitz mapping in $2$-fuzzy $2$-normed linear spaces. Also, we give anew generalization of the Mazur-Ulam theorem when $X$ is a $2$-fuzzy $2$%-normed linear space or $Im (X)$ is a fuzzy $2$-normed linear space, thatis, the Mazur-Ulam theorem holds, when the $2$-isometry mapped to a $2$%-fuzzy $2$-normed linear space...
متن کاملHYERS-ULAM-RASSIAS STABILITY OF FUNCTIONAL EQUATIONS ON FUZZY NORMED LINER SPACES
In this paper, we use the denition of fuzzy normed spaces givenby Bag and Samanta and the behaviors of solutions of the additive functionalequation are described. The Hyers-Ulam stability problem of this equationis discussed and theorems concerning the Hyers-Ulam-Rassias stability of theequation are proved on fuzzy normed linear space.
متن کاملON APPROXIMATE CAUCHY EQUATION IN FELBIN'S TYPE FUZZY NORMED LINEAR SPACES
n this paper we study the Hyers-Ulam-Rassias stability of Cauchyequation in Felbin's type fuzzy normed linear spaces. As a resultwe give an example of a fuzzy normed linear space such that thefuzzy version of the stability problem remains true, while it failsto be correct in classical analysis. This shows how the category offuzzy normed linear spaces differs from the classical normed linearspac...
متن کاملNonsmooth Algorithms and Nesterov's Smoothing Technique for Generalized Fermat-Torricelli Problems
We present some algorithms for solving a number of new models of facility location which generalize the classical Fermat-Torricelli problem. Our first approach involves using the MM Principle and Nesterov’s smoothing technique to build smooth approximations that are convenient for applying smooth optimization schemes. Another approach uses subgradient-type algorithms to cope directly with the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007